You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/8908
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoedtel, A.-
dc.contributor.authorDa Silva, I. N.-
dc.contributor.authorSerni, PJA-
dc.date.accessioned2014-05-20T13:27:14Z-
dc.date.accessioned2016-10-25T16:47:13Z-
dc.date.available2014-05-20T13:27:14Z-
dc.date.available2016-10-25T16:47:13Z-
dc.date.issued2005-04-01-
dc.identifierhttp://dx.doi.org/10.1080/15325000590479910-
dc.identifier.citationElectric Power Components and Systems. Philadelphia: Taylor & Francis Inc., v. 33, n. 4, p. 363-387, 2005.-
dc.identifier.issn1532-5008-
dc.identifier.urihttp://hdl.handle.net/11449/8908-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/8908-
dc.description.abstractInduction motors are largely used in several industry sectors. The selection of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this article is to use artificial neural networks for torque estimation with the purpose of best selecting the induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Since proposed approach estimates the torque behavior from the transient to the steady state, one of its main contributions is the potential to also be implemented in control schemes for real-time applications. Simulation results are also presented to validate the proposed approach.en
dc.format.extent363-387-
dc.language.isoeng-
dc.publisherTaylor & Francis Inc-
dc.sourceWeb of Science-
dc.subjectinduction motorspt
dc.subjectload modelingpt
dc.subjectneural networkspt
dc.subjectparameter estimationpt
dc.subjectsystem identificationpt
dc.titleNeural network based estimation of torque in induction motors for real-time applicationsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUNESP, Dept Elect Engn, BR-17033360 Bauru, SP, Brazil-
dc.description.affiliationUnespUNESP, Dept Elect Engn, BR-17033360 Bauru, SP, Brazil-
dc.identifier.doi10.1080/15325000590479910-
dc.identifier.wosWOS:000227145300001-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofElectric Power Components and Systems-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.