You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/8928
Full metadata record
DC FieldValueLanguage
dc.contributor.authordos Angelos, Eduardo Werley S.-
dc.contributor.authorSaavedra, Osvaldo R.-
dc.contributor.authorCarmona Cortes, Omar A.-
dc.contributor.authorde Souza, Andre Nunes-
dc.date.accessioned2014-05-20T13:27:17Z-
dc.date.accessioned2016-10-25T16:47:14Z-
dc.date.available2014-05-20T13:27:17Z-
dc.date.available2016-10-25T16:47:14Z-
dc.date.issued2011-10-01-
dc.identifierhttp://dx.doi.org/10.1109/TPWRD.2011.2161621-
dc.identifier.citationIEEE Transactions on Power Delivery. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 26, n. 4, p. 2436-2442, 2011.-
dc.identifier.issn0885-8977-
dc.identifier.urihttp://hdl.handle.net/11449/8928-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/8928-
dc.description.abstractThis paper proposes a computational technique for the classification of electricity consumption profiles. The methodology is comprised of two steps. In the first one, a C-means-based fuzzy clustering is performed in order to find consumers with similar consumption profiles. Afterwards, a fuzzy classification is performed using a fuzzy membership matrix and the Euclidean distance to the cluster centers. Then, the distance measures are normalized and ordered, yielding a unitary index score, where the potential fraudsters or users with irregular patterns of consumption have the highest scores. The approach was tested and validated on a real database, showing good performance in tasks of fraud and measurement defect detection.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipEletrobras-Brazil-
dc.format.extent2436-2442-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.sourceWeb of Science-
dc.subjectData miningen
dc.subjectelectricity theften
dc.subjectfuzzy clusteringen
dc.subjectnontechnical lossesen
dc.titleDetection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systemsen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal do Maranhão (UFMA)-
dc.contributor.institutionTech Fed Inst-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Federal do Maranhão (UFMA), Power Syst Grp, BR-65085580 Sao Luis, Maranhao, Brazil-
dc.description.affiliationTech Fed Inst, BR-65030005 Sao Luis, Maranhao, Brazil-
dc.description.affiliationState Univ São Paulo, BR-17033360 Bauru, Brazil-
dc.description.affiliationUnespState Univ São Paulo, BR-17033360 Bauru, Brazil-
dc.description.sponsorshipIdEletrobras-Brazil: ECV 065/2005-
dc.identifier.doi10.1109/TPWRD.2011.2161621-
dc.identifier.wosWOS:000298981800041-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIEEE Transactions on Power Delivery-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.