Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/8928
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | dos Angelos, Eduardo Werley S. | - |
dc.contributor.author | Saavedra, Osvaldo R. | - |
dc.contributor.author | Carmona Cortes, Omar A. | - |
dc.contributor.author | de Souza, Andre Nunes | - |
dc.date.accessioned | 2014-05-20T13:27:17Z | - |
dc.date.accessioned | 2016-10-25T16:47:14Z | - |
dc.date.available | 2014-05-20T13:27:17Z | - |
dc.date.available | 2016-10-25T16:47:14Z | - |
dc.date.issued | 2011-10-01 | - |
dc.identifier | http://dx.doi.org/10.1109/TPWRD.2011.2161621 | - |
dc.identifier.citation | IEEE Transactions on Power Delivery. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 26, n. 4, p. 2436-2442, 2011. | - |
dc.identifier.issn | 0885-8977 | - |
dc.identifier.uri | http://hdl.handle.net/11449/8928 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/8928 | - |
dc.description.abstract | This paper proposes a computational technique for the classification of electricity consumption profiles. The methodology is comprised of two steps. In the first one, a C-means-based fuzzy clustering is performed in order to find consumers with similar consumption profiles. Afterwards, a fuzzy classification is performed using a fuzzy membership matrix and the Euclidean distance to the cluster centers. Then, the distance measures are normalized and ordered, yielding a unitary index score, where the potential fraudsters or users with irregular patterns of consumption have the highest scores. The approach was tested and validated on a real database, showing good performance in tasks of fraud and measurement defect detection. | en |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.description.sponsorship | Eletrobras-Brazil | - |
dc.format.extent | 2436-2442 | - |
dc.language.iso | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | - |
dc.source | Web of Science | - |
dc.subject | Data mining | en |
dc.subject | electricity theft | en |
dc.subject | fuzzy clustering | en |
dc.subject | nontechnical losses | en |
dc.title | Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Federal do Maranhão (UFMA) | - |
dc.contributor.institution | Tech Fed Inst | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Universidade Federal do Maranhão (UFMA), Power Syst Grp, BR-65085580 Sao Luis, Maranhao, Brazil | - |
dc.description.affiliation | Tech Fed Inst, BR-65030005 Sao Luis, Maranhao, Brazil | - |
dc.description.affiliation | State Univ São Paulo, BR-17033360 Bauru, Brazil | - |
dc.description.affiliationUnesp | State Univ São Paulo, BR-17033360 Bauru, Brazil | - |
dc.description.sponsorshipId | Eletrobras-Brazil: ECV 065/2005 | - |
dc.identifier.doi | 10.1109/TPWRD.2011.2161621 | - |
dc.identifier.wos | WOS:000298981800041 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | IEEE Transactions on Power Delivery | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.