You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/9308
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, William Reis-
dc.contributor.authorZanardi, Maria Cecilia F. P. S.-
dc.contributor.authorSantos Cabette, Regina Elaine-
dc.contributor.authorSilva Formiga, Jorge Kennety-
dc.date.accessioned2014-05-20T13:28:05Z-
dc.date.available2014-05-20T13:28:05Z-
dc.date.issued2012-01-01-
dc.identifierhttp://dx.doi.org/10.1155/2012/137672-
dc.identifier.citationMathematical Problems In Engineering. New York: Hindawi Publishing Corporation, p. 19, 2012.-
dc.identifier.issn1024-123X-
dc.identifier.urihttp://hdl.handle.net/11449/9308-
dc.description.abstractThis work aims to analyze the stability of the rotational motion of artificial satellites in circular orbit with the influence of gravity gradient torque, using the Andoyer variables. The used method in this paper to analyze stability is the Kovalev-Savchenko theorem. This method requires the reduction of the Hamiltonian in its normal form up to fourth order by means of canonical transformations around equilibrium points. The coefficients of the normal Hamiltonian are indispensable in the study of nonlinear stability of its equilibrium points according to the three established conditions in the theorem. Some physical and orbital data of real satellites were used in the numerical simulations. In comparison with previous work, the results show a greater number of equilibrium points and an optimization in the algorithm to determine the normal form and stability analysis. The results of this paper can directly contribute in maintaining the attitude of artificial satellites.en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.format.extent19-
dc.language.isoeng-
dc.publisherHindawi Publishing Corporation-
dc.sourceWeb of Science-
dc.titleStudy of Stability of Rotational Motion of Spacecraft with Canonical Variablesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionSão Paulo Salesian Univ UNISAL-
dc.contributor.institutionInstituto Nacional de Pesquisas Espaciais (INPE)-
dc.contributor.institutionFaculdade de Tecnologia do Estado de São Paulo (FATEC)-
dc.description.affiliationSão Paulo State Univ, UNESP, Grp Orbital Dynam & Planetol, BR-12516410 Guaratingueta, SP, Brazil-
dc.description.affiliationSão Paulo Salesian Univ UNISAL, Dept Math, BR-12600100 Lorena, SP, Brazil-
dc.description.affiliationNatl Inst Space Res INPE, Space Mech & Control Div, BR-12227010 Sao Jose Dos Campos, SP, Brazil-
dc.description.affiliationFac Technol FATEC, Dept Aircraft Maintenance & Aeronaut Mfg, BR-12247004 Sao Jose Dos Campos, SP, Brazil-
dc.description.affiliationUnespSão Paulo State Univ, UNESP, Grp Orbital Dynam & Planetol, BR-12516410 Guaratingueta, SP, Brazil-
dc.identifier.doi10.1155/2012/137672-
dc.identifier.wosWOS:000301370100001-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000301370100001.pdf-
dc.relation.ispartofMathematical Problems in Engineering-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.