Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/9498
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Costa, A. F. B. | - |
dc.contributor.author | Machado, M. A. G. | - |
dc.date.accessioned | 2014-05-20T13:28:31Z | - |
dc.date.accessioned | 2016-10-25T16:48:12Z | - |
dc.date.available | 2014-05-20T13:28:31Z | - |
dc.date.available | 2016-10-25T16:48:12Z | - |
dc.date.issued | 2009-04-01 | - |
dc.identifier | http://dx.doi.org/10.1007/s00170-008-1502-9 | - |
dc.identifier.citation | International Journal of Advanced Manufacturing Technology. Artington: Springer London Ltd, v. 41, n. 7-8, p. 770-779, 2009. | - |
dc.identifier.issn | 0268-3768 | - |
dc.identifier.uri | http://hdl.handle.net/11449/9498 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/9498 | - |
dc.description.abstract | In this article, we propose a control chart for detecting shifts in the covariance matrix of a multivariate process. The monitoring statistic is based on the standardized sample variance of p quality characteristics we call the VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these p variances. The reasons to consider the VMAX statistic instead of the generalized variance |S| are faster detection of process changes and better diagnostic features, which mean that the VMAX statistic is better at identifying the out-of-control variable. User's familiarity with sample variances is another point in favor of the VMAX statistic. An example is presented to illustrate the application of the proposed chart. | en |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.format.extent | 770-779 | - |
dc.language.iso | eng | - |
dc.publisher | Springer London Ltd | - |
dc.source | Web of Science | - |
dc.subject | Control charts | en |
dc.subject | Multivariate processes | en |
dc.subject | Covariance matrix | en |
dc.subject | Generalized variance | en |
dc.title | A new chart based on sample variances for monitoring the covariance matrix of multivariate processes | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | São Paulo State Univ UNESP, Prod Dept, Guaratingueta, SP, Brazil | - |
dc.description.affiliationUnesp | São Paulo State Univ UNESP, Prod Dept, Guaratingueta, SP, Brazil | - |
dc.description.sponsorshipId | CNPq: 307744/2006-0 | - |
dc.description.sponsorshipId | FAPESP: 06/00491-0 | - |
dc.identifier.doi | 10.1007/s00170-008-1502-9 | - |
dc.identifier.wos | WOS:000264136500016 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | International Journal of Advanced Manufacturing Technology | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.