You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/9498
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCosta, A. F. B.-
dc.contributor.authorMachado, M. A. G.-
dc.date.accessioned2014-05-20T13:28:31Z-
dc.date.accessioned2016-10-25T16:48:12Z-
dc.date.available2014-05-20T13:28:31Z-
dc.date.available2016-10-25T16:48:12Z-
dc.date.issued2009-04-01-
dc.identifierhttp://dx.doi.org/10.1007/s00170-008-1502-9-
dc.identifier.citationInternational Journal of Advanced Manufacturing Technology. Artington: Springer London Ltd, v. 41, n. 7-8, p. 770-779, 2009.-
dc.identifier.issn0268-3768-
dc.identifier.urihttp://hdl.handle.net/11449/9498-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/9498-
dc.description.abstractIn this article, we propose a control chart for detecting shifts in the covariance matrix of a multivariate process. The monitoring statistic is based on the standardized sample variance of p quality characteristics we call the VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these p variances. The reasons to consider the VMAX statistic instead of the generalized variance |S| are faster detection of process changes and better diagnostic features, which mean that the VMAX statistic is better at identifying the out-of-control variable. User's familiarity with sample variances is another point in favor of the VMAX statistic. An example is presented to illustrate the application of the proposed chart.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent770-779-
dc.language.isoeng-
dc.publisherSpringer London Ltd-
dc.sourceWeb of Science-
dc.subjectControl chartsen
dc.subjectMultivariate processesen
dc.subjectCovariance matrixen
dc.subjectGeneralized varianceen
dc.titleA new chart based on sample variances for monitoring the covariance matrix of multivariate processesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationSão Paulo State Univ UNESP, Prod Dept, Guaratingueta, SP, Brazil-
dc.description.affiliationUnespSão Paulo State Univ UNESP, Prod Dept, Guaratingueta, SP, Brazil-
dc.description.sponsorshipIdCNPq: 307744/2006-0-
dc.description.sponsorshipIdFAPESP: 06/00491-0-
dc.identifier.doi10.1007/s00170-008-1502-9-
dc.identifier.wosWOS:000264136500016-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Advanced Manufacturing Technology-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.