Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/9498
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorCosta, A. F. B.-
dc.contributor.authorMachado, M. A. G.-
dc.date.accessioned2014-05-20T13:28:31Z-
dc.date.accessioned2016-10-25T16:48:12Z-
dc.date.available2014-05-20T13:28:31Z-
dc.date.available2016-10-25T16:48:12Z-
dc.date.issued2009-04-01-
dc.identifierhttp://dx.doi.org/10.1007/s00170-008-1502-9-
dc.identifier.citationInternational Journal of Advanced Manufacturing Technology. Artington: Springer London Ltd, v. 41, n. 7-8, p. 770-779, 2009.-
dc.identifier.issn0268-3768-
dc.identifier.urihttp://hdl.handle.net/11449/9498-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/9498-
dc.description.abstractIn this article, we propose a control chart for detecting shifts in the covariance matrix of a multivariate process. The monitoring statistic is based on the standardized sample variance of p quality characteristics we call the VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these p variances. The reasons to consider the VMAX statistic instead of the generalized variance |S| are faster detection of process changes and better diagnostic features, which mean that the VMAX statistic is better at identifying the out-of-control variable. User's familiarity with sample variances is another point in favor of the VMAX statistic. An example is presented to illustrate the application of the proposed chart.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent770-779-
dc.language.isoeng-
dc.publisherSpringer London Ltd-
dc.sourceWeb of Science-
dc.subjectControl chartsen
dc.subjectMultivariate processesen
dc.subjectCovariance matrixen
dc.subjectGeneralized varianceen
dc.titleA new chart based on sample variances for monitoring the covariance matrix of multivariate processesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationSão Paulo State Univ UNESP, Prod Dept, Guaratingueta, SP, Brazil-
dc.description.affiliationUnespSão Paulo State Univ UNESP, Prod Dept, Guaratingueta, SP, Brazil-
dc.description.sponsorshipIdCNPq: 307744/2006-0-
dc.description.sponsorshipIdFAPESP: 06/00491-0-
dc.identifier.doi10.1007/s00170-008-1502-9-
dc.identifier.wosWOS:000264136500016-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Advanced Manufacturing Technology-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.