You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/9509
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMachado, Marcela A. G.-
dc.contributor.authorCosta, Antonio F. B.-
dc.contributor.authorMarins, Fernando Augusto Silva-
dc.date.accessioned2014-05-20T13:28:33Z-
dc.date.accessioned2016-10-25T16:48:13Z-
dc.date.available2014-05-20T13:28:33Z-
dc.date.available2016-10-25T16:48:13Z-
dc.date.issued2009-12-01-
dc.identifierhttp://dx.doi.org/10.1007/s00170-009-2018-7-
dc.identifier.citationInternational Journal of Advanced Manufacturing Technology. Artington: Springer London Ltd, v. 45, n. 7-8, p. 772-785, 2009.-
dc.identifier.issn0268-3768-
dc.identifier.urihttp://hdl.handle.net/11449/9509-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/9509-
dc.description.abstractIn this article, we propose new control charts for monitoring the mean vector and the covariance matrix of bivariate processes. The traditional tools used for this purpose are the T (2) and the |S| charts. However, these charts have two drawbacks: (1) the T (2) and the |S| statistics are not easy to compute, and (2) after a signal, they do not distinguish the variable affected by the assignable cause. As an alternative to (1), we propose the MVMAX chart, which only requires the computation of sample means and sample variances. As an alternative to (2), we propose the joint use of two charts based on the non-central chi-square statistic (NCS statistic), named as the NCS charts. Once the NCS charts signal, the user can immediately identify the out-of-control variable. In general, the synthetic MVMAX chart is faster than the NCS charts and the joint T (2) and |S| charts in signaling processes disturbances.en
dc.format.extent772-785-
dc.language.isoeng-
dc.publisherSpringer London Ltd-
dc.sourceWeb of Science-
dc.subjectControl chartsen
dc.subjectMean vectoren
dc.subjectCovariance matrixen
dc.subjectBivariate processesen
dc.titleControl charts for monitoring the mean vector and the covariance matrix of bivariate processesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Estadual Paulista, Fac Engn, Dept Prod, BR-12516410 São Paulo, Brazil-
dc.description.affiliationUniv Estadual Paulista, São Paulo State Univ, Prod Dept, BR-12516410 São Paulo, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Fac Engn, Dept Prod, BR-12516410 São Paulo, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, São Paulo State Univ, Prod Dept, BR-12516410 São Paulo, Brazil-
dc.identifier.doi10.1007/s00170-009-2018-7-
dc.identifier.wosWOS:000271420900011-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Advanced Manufacturing Technology-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.