You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/9514
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCobra Guimaraes, Oswaldo Luiz-
dc.contributor.authordos Reis Chagas, Marta Heloisa-
dc.contributor.authorVillela Filho, Darcy Nunes-
dc.contributor.authorSiqueira, Adriano Francisco-
dc.contributor.authorIzario Filho, Helicio Jose-
dc.contributor.authorQueiroz de Aquino, Henrique Otavio-
dc.contributor.authorSilva, Messias Borges-
dc.date.accessioned2014-05-20T13:28:34Z-
dc.date.accessioned2016-10-25T16:48:14Z-
dc.date.available2014-05-20T13:28:34Z-
dc.date.available2016-10-25T16:48:14Z-
dc.date.issued2008-07-01-
dc.identifierhttp://dx.doi.org/10.1016/j.cej.2007.09.021-
dc.identifier.citationChemical Engineering Journal. Lausanne: Elsevier B.V. Sa, v. 140, n. 1-3, p. 71-76, 2008.-
dc.identifier.issn1385-8947-
dc.identifier.urihttp://hdl.handle.net/11449/9514-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/9514-
dc.description.abstractThe photo-oxidation of acid orange 52 dye was performed in the presence of H2O2, utilizing UV light, aiming the discoloration process modeling and the process variable influence characterization. The discoloration process was modeled by the use of feedforward neural network. Each sample was characterized by five independent variables (dye concentration, pH, hydrogen peroxide volume, temperature and time of operation) and a dependent variable (absorbance). The neural model has also provided, through Garson Partition coefficients and the Pertubation method, the independent variable influence order determination. The results indicated that the time of operation was the predominant variable and reaction mean temperature was the lesser influent variable. The neural model obtained presented coefficients of correlation on the order 0.98, for sets of trainability, validation and testing, indicating the power of prediction of the model and its character of generalization. (c) 2007 Elsevier B.V. All rights reserved.en
dc.format.extent71-76-
dc.language.isoeng-
dc.publisherElsevier B.V. Sa-
dc.sourceWeb of Science-
dc.subjectneural modelingen
dc.subjectazo dyeen
dc.subjectUV/H2O2en
dc.titleDiscoloration process modeling by neural networken
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Estadual Paulista, Guaratingueta Sate Univ, Sch Engn, São Paulo, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Guaratingueta Sate Univ, Sch Engn, São Paulo, Brazil-
dc.identifier.doi10.1016/j.cej.2007.09.021-
dc.identifier.wosWOS:000257260800009-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofChemical Engineering Journal-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.