Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/9514
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorCobra Guimaraes, Oswaldo Luiz-
dc.contributor.authordos Reis Chagas, Marta Heloisa-
dc.contributor.authorVillela Filho, Darcy Nunes-
dc.contributor.authorSiqueira, Adriano Francisco-
dc.contributor.authorIzario Filho, Helicio Jose-
dc.contributor.authorQueiroz de Aquino, Henrique Otavio-
dc.contributor.authorSilva, Messias Borges-
dc.date.accessioned2014-05-20T13:28:34Z-
dc.date.accessioned2016-10-25T16:48:14Z-
dc.date.available2014-05-20T13:28:34Z-
dc.date.available2016-10-25T16:48:14Z-
dc.date.issued2008-07-01-
dc.identifierhttp://dx.doi.org/10.1016/j.cej.2007.09.021-
dc.identifier.citationChemical Engineering Journal. Lausanne: Elsevier B.V. Sa, v. 140, n. 1-3, p. 71-76, 2008.-
dc.identifier.issn1385-8947-
dc.identifier.urihttp://hdl.handle.net/11449/9514-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/9514-
dc.description.abstractThe photo-oxidation of acid orange 52 dye was performed in the presence of H2O2, utilizing UV light, aiming the discoloration process modeling and the process variable influence characterization. The discoloration process was modeled by the use of feedforward neural network. Each sample was characterized by five independent variables (dye concentration, pH, hydrogen peroxide volume, temperature and time of operation) and a dependent variable (absorbance). The neural model has also provided, through Garson Partition coefficients and the Pertubation method, the independent variable influence order determination. The results indicated that the time of operation was the predominant variable and reaction mean temperature was the lesser influent variable. The neural model obtained presented coefficients of correlation on the order 0.98, for sets of trainability, validation and testing, indicating the power of prediction of the model and its character of generalization. (c) 2007 Elsevier B.V. All rights reserved.en
dc.format.extent71-76-
dc.language.isoeng-
dc.publisherElsevier B.V. Sa-
dc.sourceWeb of Science-
dc.subjectneural modelingen
dc.subjectazo dyeen
dc.subjectUV/H2O2en
dc.titleDiscoloration process modeling by neural networken
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Estadual Paulista, Guaratingueta Sate Univ, Sch Engn, São Paulo, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Guaratingueta Sate Univ, Sch Engn, São Paulo, Brazil-
dc.identifier.doi10.1016/j.cej.2007.09.021-
dc.identifier.wosWOS:000257260800009-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofChemical Engineering Journal-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.