You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/9651
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeixeira, MCM-
dc.contributor.authorZak, S. H.-
dc.date.accessioned2014-05-20T13:28:54Z-
dc.date.accessioned2016-10-25T16:48:24Z-
dc.date.available2014-05-20T13:28:54Z-
dc.date.available2016-10-25T16:48:24Z-
dc.date.issued1998-07-01-
dc.identifierhttp://dx.doi.org/10.1109/72.701176-
dc.identifier.citationIEEE Transactions on Neural Networks. New York: IEEE-Inst Electrical Electronics Engineers Inc., v. 9, n. 4, p. 629-638, 1998.-
dc.identifier.issn1045-9227-
dc.identifier.urihttp://hdl.handle.net/11449/9651-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/9651-
dc.description.abstractContinuous-time neural networks for solving convex nonlinear unconstrained;programming problems without using gradient information of the objective function are proposed and analyzed. Thus, the proposed networks are nonderivative optimizers. First, networks for optimizing objective functions of one variable are discussed. Then, an existing one-dimensional optimizer is analyzed, and a new line search optimizer is proposed. It is shown that the proposed optimizer network is robust in the sense that it has disturbance rejection property. The network can be implemented easily in hardware using standard circuit elements. The one-dimensional net is used as a building block in multidimensional networks for optimizing objective functions of several variables. The multidimensional nets implement a continuous version of the coordinate descent method.en
dc.format.extent629-638-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.sourceWeb of Science-
dc.subjectanalog networkspt
dc.subjectcoordinate descentpt
dc.subjectderivative free optimizationpt
dc.subjectunconstrained optimizationpt
dc.titleAnalog neural nonderivative optimizersen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionPurdue Univ-
dc.description.affiliationUNESP, Dept Elect Engn, FEIS, BR-15385000 Ilha Solteira, SP, Brazil-
dc.description.affiliationPurdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA-
dc.description.affiliationUnespUNESP, Dept Elect Engn, FEIS, BR-15385000 Ilha Solteira, SP, Brazil-
dc.identifier.doi10.1109/72.701176-
dc.identifier.wosWOS:000074419800005-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIEEE Transactions on Neural Networks-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.