Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/9693
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gallego, R. A. | - |
dc.contributor.author | Monticelli, A. | - |
dc.contributor.author | Romero, R. | - |
dc.date.accessioned | 2014-05-20T13:28:58Z | - |
dc.date.accessioned | 2016-10-25T16:48:27Z | - |
dc.date.available | 2014-05-20T13:28:58Z | - |
dc.date.available | 2016-10-25T16:48:27Z | - |
dc.date.issued | 1998-05-01 | - |
dc.identifier | http://dx.doi.org/10.1049/ip-gtd:19981895 | - |
dc.identifier.citation | Iee Proceedings-generation Transmission and Distribution. Hertford: IEE-inst Elec Eng, v. 145, n. 3, p. 329-335, 1998. | - |
dc.identifier.issn | 1350-2360 | - |
dc.identifier.uri | http://hdl.handle.net/11449/9693 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/9693 | - |
dc.description.abstract | The paper presents an extended genetic algorithm for solving the optimal transmission network expansion planning problem. Two main improvements have been introduced in the genetic algorithm: (a) initial population obtained by conventional optimisation based methods; (b) mutation approach inspired in the simulated annealing technique, the proposed method is general in the sense that it does not assume any particular property of the problem being solved, such as linearity or convexity. Excellent performance is reported in the test results section of the paper for a difficult large-scale real-life problem: a substantial reduction in investment costs has been obtained with regard to previous solutions obtained via conventional optimisation methods and simulated annealing algorithms; statistical comparison procedures have been employed in benchmarking different versions of the genetic algorithm and simulated annealing methods. | en |
dc.format.extent | 329-335 | - |
dc.language.iso | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | - |
dc.source | Web of Science | - |
dc.subject | genetic algorithm | pt |
dc.subject | network static expansion planning | pt |
dc.subject | combinatorial optimisation | pt |
dc.title | Transmission system expansion planning by an extended genetic algorithm | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ Estadual Campinas, Fac Engn Eletr & Computacao, Dept Sistemas & Energia Eletr, BR-13081970 Campinas, SP, Brazil | - |
dc.description.affiliation | Univ Estadual Paulista, Fac Engn Ilha Solteira, Dept Engn Eletr, BR-15385000 São Paulo, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, Fac Engn Ilha Solteira, Dept Engn Eletr, BR-15385000 São Paulo, Brazil | - |
dc.identifier.doi | 10.1049/ip-gtd:19981895 | - |
dc.identifier.wos | WOS:000073942100017 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | IEE Proceedings: Generation, Transmission and Distribution | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.