You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/9740
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLopes, MLM-
dc.contributor.authorMinussi, C. R.-
dc.contributor.authorLotufo, ADP-
dc.date.accessioned2014-05-20T13:29:02Z-
dc.date.accessioned2016-10-25T16:48:30Z-
dc.date.available2014-05-20T13:29:02Z-
dc.date.available2016-10-25T16:48:30Z-
dc.date.issued2005-01-01-
dc.identifierhttp://dx.doi.org/10.1016/j.asoc.2004.07.003-
dc.identifier.citationApplied Soft Computing. Amsterdam: Elsevier B.V., v. 5, n. 2, p. 235-244, 2005.-
dc.identifier.issn1568-4946-
dc.identifier.urihttp://hdl.handle.net/11449/9740-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/9740-
dc.description.abstractThis work presents a neural network based on the ART architecture ( adaptive resonance theory), named fuzzy ART& ARTMAP neural network, applied to the electric load-forecasting problem. The neural networks based on the ARTarchitecture have two fundamental characteristics that are extremely important for the network performance ( stability and plasticity), which allow the implementation of continuous training. The fuzzy ART& ARTMAP neural network aims to reduce the imprecision of the forecasting results by a mechanism that separate the analog and binary data, processing them separately. Therefore, this represents a reduction on the processing time and improved quality of the results, when compared to the Back-Propagation neural network, and better to the classical forecasting techniques (ARIMA of Box and Jenkins methods). Finished the training, the fuzzy ART& ARTMAP neural network is capable to forecast electrical loads 24 h in advance. To validate the methodology, data from a Brazilian electric company is used. (C) 2004 Elsevier B.V. All rights reserved.en
dc.format.extent235-244-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectadaptive resonance theorypt
dc.subjectelectric load forecastingpt
dc.subjectelectric power systemspt
dc.subjectneural networkspt
dc.subjectfuzzy logicpt
dc.subjectfuzzy ART&ARTMAP neural networkpt
dc.titleElectric load forecasting using a fuzzy ART&ARTMAP neural networken
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationSão Paulo State Univ, UNESP, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil-
dc.description.affiliationUnespSão Paulo State Univ, UNESP, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil-
dc.identifier.doi10.1016/j.asoc.2004.07.003-
dc.identifier.wosWOS:000227208700008-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofApplied Soft Computing-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.