Utilize este identificador para citar ou criar um link para este item:
http://acervodigital.unesp.br/handle/11449/9787
Registro de metadados completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Altran, Alessandra Bonato | - |
dc.contributor.author | Minussi, Carlos Roberto | - |
dc.contributor.author | Martins Lopes, Mara Lucia | - |
dc.contributor.author | Chavarette, Fábio Roberto | - |
dc.contributor.author | Peruzzi, Nelson Jose | - |
dc.date.accessioned | 2014-05-20T13:29:08Z | - |
dc.date.available | 2014-05-20T13:29:08Z | - |
dc.date.issued | 2011-01-01 | - |
dc.identifier | http://dx.doi.org/10.4028/www.scientific.net/AMR.217-218.39 | - |
dc.identifier.citation | High Performance Structures and Materials Engineering, Pts 1 and 2. Stafa-zurich: Trans Tech Publications Ltd, v. 217-218, p. 39-44, 2011. | - |
dc.identifier.issn | 1022-6680 | - |
dc.identifier.uri | http://hdl.handle.net/11449/9787 | - |
dc.description.abstract | In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work. | en |
dc.format.extent | 39-44 | - |
dc.language.iso | eng | - |
dc.publisher | Trans Tech Publications Ltd | - |
dc.source | Web of Science | - |
dc.subject | Multinodal Forecast of Electric Load | en |
dc.subject | Artificial Neural Networks | en |
dc.subject | Backpropagation Algorithm | en |
dc.subject | Radial Basis Function | en |
dc.title | Multinodal Load Forecasting in Power Electric Systems using a Neural Network with Radial Basis Function | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | UNESP Univ Estadual Paulista, Fac Engn, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil | - |
dc.description.affiliationUnesp | UNESP Univ Estadual Paulista, Fac Engn, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil | - |
dc.identifier.doi | 10.4028/www.scientific.net/AMR.217-218.39 | - |
dc.identifier.wos | WOS:000292278900008 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | High Performance Structures and Materials Engineering, Pts 1 and 2 | - |
Aparece nas coleções: | Artigos, TCCs, Teses e Dissertações da Unesp |
Não há nenhum arquivo associado com este item.
Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.