You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/9787
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAltran, Alessandra Bonato-
dc.contributor.authorMinussi, Carlos Roberto-
dc.contributor.authorMartins Lopes, Mara Lucia-
dc.contributor.authorChavarette, Fábio Roberto-
dc.contributor.authorPeruzzi, Nelson Jose-
dc.date.accessioned2014-05-20T13:29:08Z-
dc.date.available2014-05-20T13:29:08Z-
dc.date.issued2011-01-01-
dc.identifierhttp://dx.doi.org/10.4028/www.scientific.net/AMR.217-218.39-
dc.identifier.citationHigh Performance Structures and Materials Engineering, Pts 1 and 2. Stafa-zurich: Trans Tech Publications Ltd, v. 217-218, p. 39-44, 2011.-
dc.identifier.issn1022-6680-
dc.identifier.urihttp://hdl.handle.net/11449/9787-
dc.description.abstractIn this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.en
dc.format.extent39-44-
dc.language.isoeng-
dc.publisherTrans Tech Publications Ltd-
dc.sourceWeb of Science-
dc.subjectMultinodal Forecast of Electric Loaden
dc.subjectArtificial Neural Networksen
dc.subjectBackpropagation Algorithmen
dc.subjectRadial Basis Functionen
dc.titleMultinodal Load Forecasting in Power Electric Systems using a Neural Network with Radial Basis Functionen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUNESP Univ Estadual Paulista, Fac Engn, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil-
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Fac Engn, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil-
dc.identifier.doi10.4028/www.scientific.net/AMR.217-218.39-
dc.identifier.wosWOS:000292278900008-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofHigh Performance Structures and Materials Engineering, Pts 1 and 2-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.