Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/9798
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Decanini, J. G. M. S. | - |
dc.contributor.author | Tonelli-Neto, M. S. | - |
dc.contributor.author | Minussi, C. R. | - |
dc.date.accessioned | 2014-05-20T13:29:09Z | - |
dc.date.accessioned | 2016-10-25T16:48:36Z | - |
dc.date.available | 2014-05-20T13:29:09Z | - |
dc.date.available | 2016-10-25T16:48:36Z | - |
dc.date.issued | 2012-11-01 | - |
dc.identifier | http://dx.doi.org/10.1049/iet-gtd.2012.0028 | - |
dc.identifier.citation | Iet Generation Transmission & Distribution. Hertford: Inst Engineering Technology-iet, v. 6, n. 11, p. 1112-1120, 2012. | - |
dc.identifier.issn | 1751-8687 | - |
dc.identifier.uri | http://hdl.handle.net/11449/9798 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/9798 | - |
dc.description.abstract | The present study proposes a methodology for the automatic diagnosis of short-circuit faults in distribution systems using modern techniques for signal analysis and artificial intelligence. This support tool for decision making accelerates the restoration process, providing greater security, reliability and profitability to utilities. The fault detection procedure is performed using statistical and direct analyses of the current waveforms in the wavelet domain. Current and voltage signal features are extracted using discrete wavelet transform, multi-resolution analysis and energy concept. These behavioural indices correspond to the input vectors of three parallel sets of fuzzy ARTMAP neural networks. The network outcomes are integrated by the Dempster-Shafer theory, giving quantitative information about the diagnosis and its reliability. Tests were carried out using a practical distribution feeder from a Brazilian electric utility, and the results show that the method is efficient with a high level of confidence. | en |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.format.extent | 1112-1120 | - |
dc.language.iso | eng | - |
dc.publisher | Inst Engineering Technology-iet | - |
dc.source | Web of Science | - |
dc.title | Robust fault diagnosis in power distribution systems based on fuzzy ARTMAP neural network-aided evidence theory | en |
dc.type | outro | - |
dc.contributor.institution | Inst Fed Educ Ciência & Tecnol São Paulo IFSP | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Inst Fed Educ Ciência & Tecnol São Paulo IFSP, BR-19470000 Presidente Epitacio, SP, Brazil | - |
dc.description.affiliation | Univ Estadual Paulista, UNESP, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, UNESP, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil | - |
dc.identifier.doi | 10.1049/iet-gtd.2012.0028 | - |
dc.identifier.wos | WOS:000318231300005 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Iet Generation Transmission & Distribution | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.