You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/9803
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMelo, Joel D.-
dc.contributor.authorCarreno, Edgar Manuel-
dc.contributor.authorPadilha-Feltrin, Antonio-
dc.date.accessioned2014-05-20T13:29:10Z-
dc.date.accessioned2016-10-25T16:48:36Z-
dc.date.available2014-05-20T13:29:10Z-
dc.date.available2016-10-25T16:48:36Z-
dc.date.issued2012-11-01-
dc.identifierhttp://dx.doi.org/10.1109/TPWRS.2012.2190109-
dc.identifier.citationIEEE Transactions on Power Systems. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 27, n. 4, p. 1870-1878, 2012.-
dc.identifier.issn0885-8950-
dc.identifier.urihttp://hdl.handle.net/11449/9803-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/9803-
dc.description.abstractA multi-agent system for spatial electric load forecasting, especially suited to simulating the different social dynamics involved in distribution systems, is presented. This approach improves the spatial forecasting techniques that usually consider the service zone as a static entity to model or simulate the spatial electric load forecasting in a city. This paper aims to determine how the electric load will be distributed among the sub-zones in the city. For this, the service zone is divided into several subzones, each subzone considered as an independent agent identified with a corresponding load level, and their relationships with the neighbor zones are represented through development probabilities. These probabilities are considered as input data for the simulation. Given this setting, different kinds of agents can be developed to simulate the growth pattern of the loads in distribution systems in parallel. The approach is tested with data from a real distribution system in a mid-size city; the results show a low spatial error when compared to real data. Less than 6% of the load growth was identified 0.71 km outside of its correct location on the test system.en
dc.description.sponsorshipFundação de Ensino Pesquisa e Extensão de Ilha Solteira (FEPISA)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent1870-1878-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.sourceWeb of Science-
dc.subjectAgenten
dc.subjectdistribution planningen
dc.subjectknowledge extractionen
dc.subjectland useen
dc.subjectmulti-agenten
dc.subjectspatial electric load forecastingen
dc.subjectspatial erroren
dc.titleMulti-Agent Simulation of Urban Social Dynamics for Spatial Load Forecastingen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual do Oeste do Paraná (UNIOESTE)-
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Engn Eletr, Fac Engn Ilha Solteira, BR-15385000 Ilha Solteira, SP, Brazil-
dc.description.affiliationCECE UNIOESTE, Foz de Iguacu, PR, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Engn Eletr, Fac Engn Ilha Solteira, BR-15385000 Ilha Solteira, SP, Brazil-
dc.description.sponsorshipIdCNPq: 303741/2009-0-
dc.identifier.doi10.1109/TPWRS.2012.2190109-
dc.identifier.wosWOS:000310389000016-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIEEE Transactions on Power Systems-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.