You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/9806
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaciel, Renan S.-
dc.contributor.authorRosa, Mauro-
dc.contributor.authorMiranda, Vladimiro-
dc.contributor.authorPadilha-Feltrin, Antonio-
dc.date.accessioned2014-05-20T13:29:10Z-
dc.date.accessioned2016-10-25T16:48:36Z-
dc.date.available2014-05-20T13:29:10Z-
dc.date.available2016-10-25T16:48:36Z-
dc.date.issued2012-08-01-
dc.identifierhttp://dx.doi.org/10.1016/j.epsr.2012.02.018-
dc.identifier.citationElectric Power Systems Research. Lausanne: Elsevier B.V. Sa, v. 89, p. 100-108, 2012.-
dc.identifier.issn0378-7796-
dc.identifier.urihttp://hdl.handle.net/11449/9806-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/9806-
dc.description.abstractThis paper proposes a multi-objective approach to a distribution network planning process that deals with the challenges derived from the integration of Distributed Generation (DG). The proposal consists of a multi-objective version of the well-known Evolutionary Particle Swarm Optimization method (MEPSO). A broad performance comparison is made between the MEPSO and other multi-objective optimization meta-heuristics, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and a Multi-objective Tabu Search (MOTS), using two distribution networks in a given DG penetration scenario. Although the three methods proved to be applicable in distribution system planning, the MEPSO algorithm has presented promising attributes and a constant and high level performance when compared to other methods. (C) 2012 Elsevier BM. All rights reserved.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.format.extent100-108-
dc.language.isoeng-
dc.publisherElsevier B.V. Sa-
dc.sourceWeb of Science-
dc.subjectDistributed generation planningen
dc.subjectMulti-objective optimizationen
dc.subjectEvolutionary particle swarm optimizationen
dc.subjectGenetic Algorithmen
dc.subjectTabu Searchen
dc.titleMulti-objective evolutionary particle swarm optimization in the assessment of the impact of distributed generationen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionINESCPorto-
dc.contributor.institutionUniv Porto-
dc.description.affiliationSão Paulo State Univ, UNESP, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil-
dc.description.affiliationINESCPorto, USE Power Syst Unit, P-4200465 Oporto, Portugal-
dc.description.affiliationUniv Porto, FEUP, Fac Engn, P-4200465 Oporto, Portugal-
dc.description.affiliationUnespSão Paulo State Univ, UNESP, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil-
dc.description.sponsorshipIdFAPESP: 06/06758-9-
dc.description.sponsorshipIdCNPq: 303741/2009-0-
dc.description.sponsorshipIdCAPES: 0694/09-6-
dc.identifier.doi10.1016/j.epsr.2012.02.018-
dc.identifier.wosWOS:000304787300012-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofElectric Power Systems Research-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.