Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/9806
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Maciel, Renan S. | - |
dc.contributor.author | Rosa, Mauro | - |
dc.contributor.author | Miranda, Vladimiro | - |
dc.contributor.author | Padilha-Feltrin, Antonio | - |
dc.date.accessioned | 2014-05-20T13:29:10Z | - |
dc.date.accessioned | 2016-10-25T16:48:36Z | - |
dc.date.available | 2014-05-20T13:29:10Z | - |
dc.date.available | 2016-10-25T16:48:36Z | - |
dc.date.issued | 2012-08-01 | - |
dc.identifier | http://dx.doi.org/10.1016/j.epsr.2012.02.018 | - |
dc.identifier.citation | Electric Power Systems Research. Lausanne: Elsevier B.V. Sa, v. 89, p. 100-108, 2012. | - |
dc.identifier.issn | 0378-7796 | - |
dc.identifier.uri | http://hdl.handle.net/11449/9806 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/9806 | - |
dc.description.abstract | This paper proposes a multi-objective approach to a distribution network planning process that deals with the challenges derived from the integration of Distributed Generation (DG). The proposal consists of a multi-objective version of the well-known Evolutionary Particle Swarm Optimization method (MEPSO). A broad performance comparison is made between the MEPSO and other multi-objective optimization meta-heuristics, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and a Multi-objective Tabu Search (MOTS), using two distribution networks in a given DG penetration scenario. Although the three methods proved to be applicable in distribution system planning, the MEPSO algorithm has presented promising attributes and a constant and high level performance when compared to other methods. (C) 2012 Elsevier BM. All rights reserved. | en |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | - |
dc.format.extent | 100-108 | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier B.V. Sa | - |
dc.source | Web of Science | - |
dc.subject | Distributed generation planning | en |
dc.subject | Multi-objective optimization | en |
dc.subject | Evolutionary particle swarm optimization | en |
dc.subject | Genetic Algorithm | en |
dc.subject | Tabu Search | en |
dc.title | Multi-objective evolutionary particle swarm optimization in the assessment of the impact of distributed generation | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | INESCPorto | - |
dc.contributor.institution | Univ Porto | - |
dc.description.affiliation | São Paulo State Univ, UNESP, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil | - |
dc.description.affiliation | INESCPorto, USE Power Syst Unit, P-4200465 Oporto, Portugal | - |
dc.description.affiliation | Univ Porto, FEUP, Fac Engn, P-4200465 Oporto, Portugal | - |
dc.description.affiliationUnesp | São Paulo State Univ, UNESP, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil | - |
dc.description.sponsorshipId | FAPESP: 06/06758-9 | - |
dc.description.sponsorshipId | CNPq: 303741/2009-0 | - |
dc.description.sponsorshipId | CAPES: 0694/09-6 | - |
dc.identifier.doi | 10.1016/j.epsr.2012.02.018 | - |
dc.identifier.wos | WOS:000304787300012 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Electric Power Systems Research | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.