You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/9811
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCarreno, Edgar Manuel-
dc.contributor.authorRocha, Rodrigo Mazo-
dc.contributor.authorPadilha-Feltrin, Antonio-
dc.date.accessioned2014-05-20T13:29:11Z-
dc.date.accessioned2016-10-25T16:48:37Z-
dc.date.available2014-05-20T13:29:11Z-
dc.date.available2016-10-25T16:48:37Z-
dc.date.issued2011-05-01-
dc.identifierhttp://dx.doi.org/10.1109/TPWRS.2010.2061877-
dc.identifier.citationIEEE Transactions on Power Systems. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 26, n. 2, p. 532-540, 2011.-
dc.identifier.issn0885-8950-
dc.identifier.urihttp://hdl.handle.net/11449/9811-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/9811-
dc.description.abstractA method for spatial electric load forecasting using a reduced set of data is presented. The method uses a cellular automata model for the spatiotemporal allocation of new loads in the service zone. The density of electrical load for each of the major consumer classes in each cell is used as the current state, and a series of update rules are established to simulate S-growth behavior and the complementarity among classes. The most important features of this method are good performance, few data and the simplicity of the algorithm, allowing for future scalability. The approach is tested in a real system from a mid-size city showing good performance. Results are presented in future preference maps.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent532-540-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.sourceWeb of Science-
dc.subjectCellular automataen
dc.subjectdistribution planningen
dc.subjectknowledge extractionen
dc.subjectland useen
dc.subjectspatial electric load forecastingen
dc.titleA Cellular Automaton Approach to Spatial Electric Load Forecastingen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Estadual Paulista, UNESP, Fac Engn Ilha Solteira, Dept Engn Eletr, BR-15385000 Ilha Solteira, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Fac Engn Ilha Solteira, Dept Engn Eletr, BR-15385000 Ilha Solteira, SP, Brazil-
dc.description.sponsorshipIdCNPq: 500485/2009-7-
dc.description.sponsorshipIdCNPq: 303741/2009-0-
dc.description.sponsorshipIdCNPq: 00352-2009-
dc.identifier.doi10.1109/TPWRS.2010.2061877-
dc.identifier.wosWOS:000289904200005-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIEEE Transactions on Power Systems-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.