You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/9836
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOchoa, Luis F.-
dc.contributor.authorPadilha-Feltrin, Antonio-
dc.contributor.authorHarrison, Gareth P.-
dc.date.accessioned2014-05-20T13:29:13Z-
dc.date.accessioned2016-10-25T16:48:38Z-
dc.date.available2014-05-20T13:29:13Z-
dc.date.available2016-10-25T16:48:38Z-
dc.date.issued2008-09-01-
dc.identifierhttp://dx.doi.org/10.1109/TEC.2007.914180-
dc.identifier.citationIEEE Transactions on Energy Conversion. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 23, n. 3, p. 968-974, 2008.-
dc.identifier.issn0885-8969-
dc.identifier.urihttp://hdl.handle.net/11449/9836-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/9836-
dc.description.abstractEnergy policies and technological progress in the development of wind turbines have made wind power the fastest growing renewable power source worldwide. The inherent variability of this resource requires special attention when analyzing the impacts of high penetration on the distribution network. A time-series steady-state analysis is proposed that assesses technical issues such as energy export, losses, and short-circuit levels. A multiobjective programming approach based on the nondominated sorting genetic algorithm (NSGA) is applied in order to find configurations that maximize the integration of distributed wind power generation (DWPG) while satisfying voltage and thermal limits. The approach has been applied to a medium voltage distribution network considering hourly demand and wind profiles for part of the U.K. The Pareto optimal solutions obtained highlight the drawbacks of using a single demand and generation scenario, and indicate the importance of appropriate substation voltage settings for maximizing the connection of MPG.en
dc.format.extent968-974-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.sourceWeb of Science-
dc.subjectdistributed generation (DG)en
dc.subjectdistribution networksen
dc.subjectmultiobjective programmingen
dc.subjectPareto's optimalityen
dc.subjectwind poweren
dc.titleTime-series-based maximization of distributed wind power generation integrationen
dc.typeoutro-
dc.contributor.institutionUniv Edinburgh-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Edinburgh, Inst Energy Syst, Sch Engn & Elect, Edinburgh EH9 3JL, Midlothian, Scotland-
dc.description.affiliationSão Paulo State Univ, Dept Elect Engn, UNESP, BR-15385000 Ilha Solteira, Brazil-
dc.description.affiliationUnespSão Paulo State Univ, Dept Elect Engn, UNESP, BR-15385000 Ilha Solteira, Brazil-
dc.identifier.doi10.1109/TEC.2007.914180-
dc.identifier.wosWOS:000258820200028-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIEEE Transactions on Energy Conversion-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.