You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/9850
Full metadata record
DC FieldValueLanguage
dc.contributor.authorda Silva, E. R. P.-
dc.contributor.authorAssuncao, E.-
dc.contributor.authorTeixeira, M. C. M.-
dc.contributor.authorFaria, F. A.-
dc.contributor.authorBuzachero, L. F. S.-
dc.date.accessioned2014-05-20T13:29:15Z-
dc.date.accessioned2016-10-25T16:48:40Z-
dc.date.available2014-05-20T13:29:15Z-
dc.date.available2016-10-25T16:48:40Z-
dc.date.issued2011-01-01-
dc.identifierhttp://dx.doi.org/10.1080/00207179.2011.598948-
dc.identifier.citationInternational Journal of Control. Abingdon: Taylor & Francis Ltd, v. 84, n. 8, p. 1377-1386, 2011.-
dc.identifier.issn0020-7179-
dc.identifier.urihttp://hdl.handle.net/11449/9850-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/9850-
dc.description.abstractIn some practical problems, for instance, the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. Using Linear Matrix Inequalities (LMIs), and applying the reciprocal projection lemma in a Parameter-dependent Lyapunov Function (PDLF), this article proposes a method for the design of state-derivative feedback applied to uncertain linear systems. The control design aims the system stabilisation without and with decay rate restriction. When considering only the system stability, the proposed methodology becomes practically equivalent to the Common Quadratic Lyapunov Function (CQLF) technique. Otherwise, when the decay rate is taken in account, the proposed methodology is shown to be less conservative. Numerical examples illustrate its efficiency.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent1377-1386-
dc.language.isoeng-
dc.publisherTaylor & Francis Ltd-
dc.sourceWeb of Science-
dc.subjectstate-derivative feedbacken
dc.subjectuncertain linear systemsen
dc.subjectstructural failuresen
dc.subjectparameter-dependent Lyapunov functionen
dc.subjectlinear matrix inequalities (LMIs)en
dc.titleParameter-dependent Lyapunov functions for state-derivative feedback control in polytopic linear systemsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUNESP Univ Estadual Paulista, Fac Engn, Dept Elect Engn, Res Lab Control, BR-15385000 São Paulo, Brazil-
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Fac Engn, Dept Elect Engn, Res Lab Control, BR-15385000 São Paulo, Brazil-
dc.identifier.doi10.1080/00207179.2011.598948-
dc.identifier.wosWOS:000295317900007-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Control-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.