You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/98694
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorValêncio, Carlos Roberto [UNESP]-
dc.contributor.authorOyama, Fernando Takeshi-
dc.date.accessioned2014-06-11T19:29:40Z-
dc.date.accessioned2016-10-25T19:21:49Z-
dc.date.available2014-06-11T19:29:40Z-
dc.date.available2016-10-25T19:21:49Z-
dc.date.issued2010-02-22-
dc.identifier.citationOYAMA, Fernando Takeshi. Mineração multirrelacional de regras de associação em grandes bases de dados. 2010. 126 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2010.-
dc.identifier.urihttp://hdl.handle.net/11449/98694-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/98694-
dc.description.abstractO crescente avanço e a disponibilidade de recursos computacionais viabilizam o armazenamento e a manipulação de grandes bases de dados. As técnicas típicas de mineração de dados possibilitam a extração de padrões desde que os dados estejam armazenados em uma única tabela. A mineração de dados multirrelacional, por sua vez, apresenta-se como uma abordagem mais recente que permite buscar padrões provenientes de múltiplas tabelas, sendo indicada para a aplicação em bases de dados relacionais. No entanto, os algoritmos multirrelacionais de mineração de regras de associação existentes tornam-se impossibilitados de efetuar a tarefa de mineração em grandes volumes de dados, uma vez que a quantia de memória exigida para a conclusão do processamento ultrapassa a quantidade disponível. O objetivo do presente trabalho consiste em apresentar um algoritmo multirrelacional de extração de regras de associação com o foco na aplicação em grandes bases de dados relacionais. Para isso, o algoritmo proposto, MR-RADIX, apresenta uma estrutura denominada Radix-tree que representa comprimidamente a base de dados em memória. Além disso, o algoritmo utiliza-se do conceito de particionamento para subdividir a base de dados, de modo que cada partição possa ser processada integralmente em memória. Os testes realizados demonstram que o algoritmo MR-RADIX proporciona um desempenho superior a outros algoritmos correlatos e, ainda, efetua com êxito, diferentemente dos demais, a mineração de regras de associação em grandes bases de dados.pt
dc.description.abstractThe increasing spread and availability of computing resources make feasible storage and handling of large databases. Traditional techniques of data mining allows the extraction of patterns provided that data is stored in a single table. The multi- relational data mining presents itself as a more recent approach that allows search patterns from multiple tables, indicated for use in relational databases. However, the existing multi-relational association rules mining algorithms become unable to make mining task in large data, since the amount of memory required for the completion of processing exceed the amount available. The goal of this work is to present a multi- relational algorithm for extracting association rules with focus application in large relational databases. For this the proposed algorithm MR-RADIX presents a structure called Radix-tree that represents compressly the database in memory. Moreover, the algorithm uses the concept of partitioning to subdivide the database, so that each partition can be processed entirely in memory. The tests show that the MR-RADIX algorithm provides better performance than other related algorithms, and also performs successfully, unlike others, the association rules mining in large databases.en
dc.format.extent126 f. : il.-
dc.language.isopor-
dc.publisherUniversidade Estadual Paulista (UNESP)-
dc.sourceAleph-
dc.subjectBanco de dadospt
dc.subjectMineração de dados (Computação)pt
dc.subjectSistemas de computaçãopt
dc.subjectMR-RADIXen
dc.subjectMulti-relational data miningen
dc.subjectRelational databaseen
dc.titleMineração multirrelacional de regras de associação em grandes bases de dadospt
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileoyama_ft_me_sjrp.pdf-
dc.identifier.aleph000607390-
dc.identifier.capes33004153073P2-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.