You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/9927
Full metadata record
DC FieldValueLanguage
dc.contributor.authorda Silva, Samuel-
dc.contributor.authorDias Junior, Milton-
dc.contributor.authorLopes Junior, Vicente-
dc.contributor.authorBrennan, Michael J.-
dc.date.accessioned2014-05-20T13:29:26Z-
dc.date.accessioned2016-10-25T16:48:47Z-
dc.date.available2014-05-20T13:29:26Z-
dc.date.available2016-10-25T16:48:47Z-
dc.date.issued2008-10-01-
dc.identifierhttp://dx.doi.org/10.1016/j.ymssp.2008.01.004-
dc.identifier.citationMechanical Systems and Signal Processing. London: Academic Press Ltd Elsevier B.V. Ltd, v. 22, n. 7, p. 1636-1649, 2008.-
dc.identifier.issn0888-3270-
dc.identifier.urihttp://hdl.handle.net/11449/9927-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/9927-
dc.description.abstractThe development of strategies for structural health monitoring (SHM) has become increasingly important because of the necessity of preventing undesirable damage. This paper describes an approach to this problem using vibration data. It involves a three-stage process: reduction of the time-series data using principle component analysis (PCA), the development of a data-based model using an auto-regressive moving average (ARMA) model using data from an undamaged structure, and the classification of whether or not the structure is damaged using a fuzzy clustering approach. The approach is applied to data from a benchmark structure from Los Alamos National Laboratory, USA. Two fuzzy clustering algorithms are compared: fuzzy c-means (FCM) and Gustafson-Kessel (GK) algorithms. It is shown that while both fuzzy clustering algorithms are effective, the GK algorithm marginally outperforms the FCM algorithm. (C) 2008 Elsevier Ltd. All rights reserved.en
dc.format.extent1636-1649-
dc.language.isoeng-
dc.publisherAcademic Press Ltd Elsevier B.V. Ltd-
dc.sourceWeb of Science-
dc.subjectstructural health monitoringen
dc.subjecttime seriesen
dc.subjectprincipal component analysisen
dc.subjectfuzzy clusteringen
dc.titleStructural damage detection by fuzzy clusteringen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniv Southampton-
dc.description.affiliationUniv Estadual Campinas, Dept Mech Design, Fac Mech Engn, BR-13083970 Campinas, SP, Brazil-
dc.description.affiliationUniv Estadual Paulista UNESP, Dept Mech Engn, BR-15385000 Ilha Solteira, SP, Brazil-
dc.description.affiliationUniv Southampton, Inst Sound & Vibrat Res, Southampton, Hants, England-
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Dept Mech Engn, BR-15385000 Ilha Solteira, SP, Brazil-
dc.identifier.doi10.1016/j.ymssp.2008.01.004-
dc.identifier.wosWOS:000257866600009-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofMechanical Systems and Signal Processing-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.