You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/113122
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLeonel, Edson D.-
dc.contributor.authorLivorati, Ande L. P.-
dc.contributor.authorCespedes, Andre M.-
dc.date.accessioned2014-12-03T13:11:26Z-
dc.date.accessioned2016-10-25T20:14:10Z-
dc.date.available2014-12-03T13:11:26Z-
dc.date.available2016-10-25T20:14:10Z-
dc.date.issued2014-06-15-
dc.identifierhttp://dx.doi.org/10.1016/j.physa.2014.02.053-
dc.identifier.citationPhysica A-statistical Mechanics And Its Applications. Amsterdam: Elsevier Science Bv, v. 404, p. 279-284, 2014.-
dc.identifier.issn0378-4371-
dc.identifier.urihttp://hdl.handle.net/11449/113122-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/113122-
dc.description.abstractAnalytical arguments are used to describe the behavior of the average velocity in the problem of an ensemble of particles bouncing a heavy and periodically moving platform. The dynamics of the system is described by using a two-dimensional mapping for the variables' velocity and discrete time n. In the absence of dissipation and depending on the control parameter and initial conditions, diffusion in energy is observed. Considering the introduction of dissipation via inelastic collisions, we prove that the diffusion is interrupted and a transition from unlimited to limited energy growth is characterized. Our result is general and can be used when the initial condition is a very low velocity leading to a growth of average velocity with root n or for large initial velocity where an exponential decay of the average velocity is observed. The results obtained generalize the scaling observed in the bouncer model as well as the stochastic and dissipative Fermi Ulam-model. The formalism can be extended to many other different types of models, including a class of time-dependent billiards. (c) 2014 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)-
dc.description.sponsorshipCenter for Scientific Computing (NCC/GridUNESP) of the Sao Paulo State University (UNESP)-
dc.format.extent279-284-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectScaling lawsen
dc.subjectDissipative mappingen
dc.subjectChaotic dynamicsen
dc.titleA theoretical characterization of scaling properties in a bouncing ball systemen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionAbdus Salem ICTP-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Fis, BR-13506900 Rio Claro, SP, Brazil-
dc.description.affiliationAbdus Salem ICTP, I-34151 Trieste, Italy-
dc.description.affiliationUniv Sao Paulo, Inst Fis, IFUSP, BR-05314970 Sao Paulo, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Fis, BR-13506900 Rio Claro, SP, Brazil-
dc.description.sponsorshipIdFAPESP: 12/23688-5-
dc.identifier.doi10.1016/j.physa.2014.02.053-
dc.identifier.wosWOS:000335638300026-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPhysica A: Statistical Mechanics and Its Applications-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.