You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/33720
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMattar, H. L.-
dc.contributor.authorMinim, L. A.-
dc.contributor.authorCoimbra, JSR-
dc.contributor.authorMinim, VPR-
dc.contributor.authorSaraiva, S. H.-
dc.contributor.authorTelis-Romero, J.-
dc.date.accessioned2014-05-20T15:22:48Z-
dc.date.accessioned2016-10-25T17:56:35Z-
dc.date.available2014-05-20T15:22:48Z-
dc.date.available2016-10-25T17:56:35Z-
dc.date.issued2004-11-01-
dc.identifierhttp://dx.doi.org/10.1081/JFP-120040207-
dc.identifier.citationInternational Journal of Food Properties. New York: Marcel Dekker Inc., v. 7, n. 3, p. 531-539, 2004.-
dc.identifier.issn1094-2912-
dc.identifier.urihttp://hdl.handle.net/11449/33720-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/33720-
dc.description.abstractThe accurate determination of thermophysical properties of milk is very important for design, simulation, optimization, and control of food processing such as evaporation, heat exchanging, spray drying, and so forth. Generally, polynomial methods are used for prediction of these properties based on empirical correlation to experimental data. Artificial neural networks are better Suited for processing noisy and extensive knowledge indexing. This article proposed the application of neural networks for prediction of specific heat, thermal conductivity, and density of milk with temperature ranged from 2.0 to 71.0degreesC, 72.0 to 92.0% of water content (w/w), and 1.350 to 7.822% of fat content (w/w). Artificial neural networks presented a better prediction capability of specific heat, thermal conductivity, and density of milk than polynomial modeling. It showed a reasonable alternative to empirical modeling for thermophysical properties of foods.en
dc.format.extent531-539-
dc.language.isoeng-
dc.publisherMarcel Dekker Inc-
dc.sourceWeb of Science-
dc.subjectmilkpt
dc.subjectthermophysical propertiespt
dc.subjectmodelingpt
dc.subjectneural networkpt
dc.titleModeling thermal conductivity, specific heat, and density of milk: A neural network approachen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Viçosa (UFV)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Fed Vicosa, Dept Food Technol, Vicosa, MG, Brazil-
dc.description.affiliationUNESP, Dept Food Engn & Technol, São Paulo, Brazil-
dc.description.affiliationUnespUNESP, Dept Food Engn & Technol, São Paulo, Brazil-
dc.identifier.doi10.1081/JFP-120040207-
dc.identifier.wosWOS:000224316600014-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Food Properties-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.