You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/74919
Full metadata record
DC FieldValueLanguage
dc.contributor.authorToledo, Claudio Fabiano Motta-
dc.contributor.authorDe Oliveira, Renato Resende Ribeiro-
dc.contributor.authorMorelato França, Paulo-
dc.date.accessioned2014-05-27T11:28:45Z-
dc.date.accessioned2016-10-25T18:46:00Z-
dc.date.available2014-05-27T11:28:45Z-
dc.date.available2016-10-25T18:46:00Z-
dc.date.issued2013-04-01-
dc.identifierhttp://dx.doi.org/10.1016/j.cor.2012.11.002-
dc.identifier.citationComputers and Operations Research, v. 40, n. 4, p. 910-919, 2013.-
dc.identifier.issn0305-0548-
dc.identifier.urihttp://hdl.handle.net/11449/74919-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/74919-
dc.description.abstractThe present paper proposes a new hybrid multi-population genetic algorithm (HMPGA) as an approach to solve the multi-level capacitated lot sizing problem with backlogging. This method combines a multi-population based metaheuristic using fix-and-optimize heuristic and mathematical programming techniques. A total of four test sets from the MULTILSB (Multi-Item Lot-Sizing with Backlogging) library are solved and the results are compared with those reached by two other methods recently published. The results have shown that HMPGA had a better performance for most of the test sets solved, specially when longer computing time is given. © 2012 Elsevier Ltd.en
dc.format.extent910-919-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectBacklogging-
dc.subjectFix and optimize-
dc.subjectGenetic algorithms-
dc.subjectHybridization-
dc.subjectLot sizing-
dc.subjectMulti-level-
dc.subjectHeuristic methods-
dc.subjectMathematical programming-
dc.titleA hybrid multi-population genetic algorithm applied to solve the multi-level capacitated lot sizing problem with backloggingen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionFederal University of Lavras-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversity of São Paulo Institute of Mathematics and Computer Science-
dc.description.affiliationFederal University of Lavras Department of Computer Science-
dc.description.affiliationUNESP Department of Mathematics and Computing-
dc.description.affiliationUnespUNESP Department of Mathematics and Computing-
dc.identifier.doi10.1016/j.cor.2012.11.002-
dc.identifier.wosWOS:000314483400002-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofComputers and Operations Research-
dc.identifier.scopus2-s2.0-84870952214-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.